Hyperbolicity, CAT(−1)-spaces and the Ptolemy inequality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Hyperbolicity of Sliced Spaces

We show that for generic sliced spacetimes global hyperbolicity is equivalent to space completeness under the assumption that the lapse, shift and spatial metric are uniformly bounded. This leads us to the conclusion that simple sliced spaces are timelike and null geodesically complete if and only if space is a complete Riemannian manifold.

متن کامل

Relative Hyperbolicity , Trees of Spaces And

We prove the existence of continuous boundary extensions (Cannon-Thurston maps) for the inclusion of a vertex space into a tree of (strongly) relatively hyperbolic spaces satisfying the qi-embedded condition. This implies the same result for inclusion of vertex (or edge) subgroups in finite graphs of (strongly) relatively hyperbolic groups. This generalises a result of Bowditch for punctured su...

متن کامل

Group actions on geodesic Ptolemy spaces

In this paper we study geodesic Ptolemy metric spaces X which allow proper and cocompact isometric actions of crystallographic or, more generally, virtual polycyclic groups. We show that X is equivariantly rough isometric to a Euclidean space.

متن کامل

Semi-hyperbolicity and Hyperbolicity

We prove that for C1-diffeomorfisms semi-hyperbolicity of an invariant set implies its hyperbolicity. Moreover, we provide some exact estimations of hyperbolicity constants by semi-hyperbolicity ones, which can be useful in strict numerical computations.

متن کامل

Relative Hyperbolicity, Trees of Spaces and Cannon-thurston Maps

We prove the existence of continuous boundary extensions (Cannon-Thurston maps) for the inclusion of a vertex space into a tree of (strongly) relatively hyperbolic spaces. The result follows for finite graphs of (strongly) relatively hyperbolic groups. This generalises a result of Bowditch for punctured surfaces in 3 manifolds. AMS subject classification = 20F32(Primary), 57M50(Secondary)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2010

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-010-0560-0